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Introduction
Randomly perturbed/augmented graphs

Overview

In this talk we are interested in

Graphs: undirected, simple graphs.

k-uniform hypergraph H = (V ,E ): E ⊆
(V
k

)
.

Random graphs G(n, p): every pair of vertices is chosen
independently with probability p.
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Spanning subgraphs in dense graphs

(Dirac ’52) every graph G of n vertices with n ≥ 3 and
δ(G ) ≥ n/2 has a Hamiltonian cycle, that is, a cycle that
passes through every vertex exactly once.

(Hajnal–Szemerédi ’70) for t ≥ 3, every graph G of n vertices
with n ∈ tN and δ(G ) ≥ (1− 1/t)n has a Kt-factor.
(Corradi–Hajnal for t = 3)

(Alon–Yuster, ’96, Komlós–Sárközy–Szemerédi ’01) given a
graph F of t vertices, every graph G of n vertices with n ∈ tN
large and δ(G ) ≥ (1− 1/χ(F ))n + C (F ) has an F -factor.
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Spanning subgraphs in dense graphs

(Komlós, ’00, Shokoufandeh–Zhao ’03) given a graph F of t
vertices, every graph G of n vertices with n large and
δ(G ) ≥ (1− 1/χcf (F ))n has an F -tiling covering all but at
most C vertices.

Theorem (Kühn–Osthus, ’09)

For all F , the relevant parameter for F -factor is either χcr (F ) or
χ(F ), and provide a dichotomy.

Theorem (H.–Treglown, ’18+)

Given a graph G of n vertices and δ(G ) ≥ (1− 1/χcf (F ) + o(1))n,
there is an algorithm that decides whether G has an F -factor in
polynomial time.

Directed graphs, partite graphs, degree sequence....
Jie Han Spanning structures in graphs and hypergraphs
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Randomly perturbed/augmented graphs

Randomly perturbed/augmented graphs: Add random edges to the
deterministic (host) graph.

Theorem (Bohman–Frieze–Martin, ’03)

Given any α > 0, there exists C = C (α) > 0 such that the
following holds. Let G be a graph of n vertices with n large and
δ(G ) ≥ αn. If we add Cn random edges to G, then the resulting
graph whp. contains a Hamiltonian cycle.

linearly many random edges are necessary

If α = 0, then we get the pure random model, where Cn log n
random edges are needed.

Compared with G(n, p), the ’saving’ is a factor of log n.
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F -factors in randomly perturbed graphs

(Balogh–Treglown–Wagner, ’18) If δ(G ) ≥ αn and
p ≥ Cn−1/d

∗(F ), then G ∪G(n, p) contains an F -factor.

d∗(F ) = max

{
eH

vH − 1
: H ⊆ F , eH > 0

}
.

(Böttcher–Montgomery–Parczyk–Person, ’18+) bounded
degree graphs F .

Question: [Treglown] For larger minimum degree, do we save more
on the probability?
E.g., K3-factors.
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Our result: Kr -factors

Theorem (H.–Morris–Treglown, 18++)

Let 2 ≤ k ≤ r − 1 be integers and γ > 0. Then there exists C > 0
such that if δ(G ) ≥ (1− k

r + γ)n and p ≥ Cn−2/k , then
G ∪G(n, p) has a Kr -factor with high probability.

the condition on p is best possible up to the value of C

the proof uses the absorbing method

uses the bipartite template initiated by Montgomery
for k > r/2, uses the lattice-based absorbing method
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Hamiltonicity in uniform hypergraphs

(Krivelverich–Kwan–Sudakov, ’16) perfect matchings and
loose Hamiltonian cycles in k-uniform hypergraphs with
minimum (k − 1)-degree

Problem: [KKS] Extend this result to `-cycles and minimum
d-degree for all 1 ≤ d , ` ≤ k − 1.

(McDowell–Mycroft, ’18+) `-Hamiltonian cycles in k-uniform
hypergraphs with minimum d-degree, d ≥ max{`, k − `}

(H.–Zhao, ’18+) solve the problem of Krivelverich–Kwan–Sudakov
completely.
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Powers of Hamiltonian cycles

Jie Han Spanning structures in graphs and hypergraphs



Introduction
Randomly perturbed/augmented graphs

Bounded degree spanning trees

Theorem (Krivelevich–Kwan–Sudakov, ’17)

If δ(G ) ≥ αn, then G ∪G(n,C (∆)/n) whp. contains any spanning
tree of maximum degree ∆.

Joos–Kim extended this result to trees with maximum degree
n/ log n.

Theorem (Joos–Kim, ’18+)

For any k ∈ N and α > 0, there exists M > 0 such that if

δ(G ) ≥ αn, and p ≥ max{n−
k

k+1 ,∆(T )k+1n−2}, then G ∪G(n, p)
whp. contains all spanning trees of maximum degree ∆, where
n1/(k+1) ≤ ∆(T ) < min{n1/k , n/(M log n)}.
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Universality for bounded degree spanning trees

Theorem (Krivelevich–Kwan–Sudakov, ’17)

If δ(G ) ≥ αn, then G ∪G(n,C (∆)/n) whp. contains any spanning
tree of maximum degree ∆.

Question: [KKS] Universality? that is, contains all spanning trees
of maximum degree ∆ simutaneously.

Theorem
(Böttcher–H.–Kohayakawa–Montgomery–Parczyk–Person, ’18+)

If δ(G ) ≥ αn, then G ∪G(n,C (∆)/n) whp. contains all spanning
trees of maximum degree ∆ simutaneously.

In fact, we prove the result for a suitable expander graph with
linearly many edges.
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Proof Sketch: Universality for bounded degree trees

Decompose the tree: T ⊇ T ′ ⊇ T1: T ′ has (1− ε)n vertices
and T1 has εn� αn vertices

Pick ε′n disjoint random stars with ∆ leaves, and finish the
embedding of T1 by the minimum degree condition

Extend the embedding of T1 to an embedding of T ′ by a
result of Haxell

Finish the embedding of T by the ‘swapping’ trick
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Thank you!

Thank you for your attention.
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